SDDEC23-14

ALEX BLOMQUIST

SELMA SARIC
SAMUEL CALDWELL
YADIEL JOHNSON

Interactive Evaluation of
Shortest Path Methods

Problem Statement

Algorithm research is always developing, and
efficiency is important, but hard to compare . Al -

This project aims to develop a system that e
enables: B
o The use of Shortest Path algorithms namely S
All Pairs and Single Source. | | ﬁ
o The use of different datasets like Escalon’s i S
road network pictured in Figure 1 | — ”

...to output detailed comparisons in road-like

networks for an educational settings Figure 1: Shortest Path Visualized Route in
Escalon, California Via MapBox

Stakeholders & Use-Cases

—

Educators: —

> Present and educate people about = @ X/T
the efficiency of different shortest- S a:,fmuamm
path algorithms %ﬂ, SO W

Students: Edm\\ \ = ,fff o

> Tool to better understand and learn | E -ff;x”---
about the performance of algorithms \ 2\ Ve S
on different data sets 6 P

&

Figure 2: Use-Case Diagram

Requirements & Constraints

Requirements:
o User upload/algorithm selection

Clean, organized presentation of SP visualizations

(@)

(@)

Algorithm execution on data sets + metrics report

(@)

Visualizations of algorithm outcomes/comparisons

(@)

Optimal resource usage per algorithm run
- Report generation and storage

Constraints:
o Full-Stack Solution

o Budget: No more than $200

Initial Milestones

Milestone Metrics:

Finalize System Architecture Design (April 2n)

Develop Server, Driver, and Web App Components (Sept. 17th/Oct. 1%)
Algorithm Visualization/AED (Nov. 1%Y)

Fully Develop User Interface/Server (Nov. 11th)
Integration and System Testing (Nov. 17t)

Final Software Release and Presentation to Panel (Dec 3"/Dec. 8t")

Original Design

Fr O nte n d INTERACTIVE EVALUATION OF SP METHODS
* Not many components on page o o
* Features were not organized

\\\\\\\\\\

aaaaaaaaaaaaaaaaaa

Figure 3: Original Home Page Wireframe

Original Design

Web Server
* Serves web application
[Backend } » Tracks algorithm executions
* Manages dataset storage
— Algorithm Execution
M e | Der Algorithm Execution Driver

* Manages execution logic

v v

Logs & State Storage Datasets Algorithms ° EX e Cut es al g Ol‘ithms].n C
 Control logic in Java

Figure 4: Original Backend Block Diagram

How Our Design Evolved

Fronte nd Interactive Evaluation of SP Methods

 Addition of tutorial page

Select an Algorithm Select a Dataset
Choose Up to Two Algorithms From ime Group

Upload a Dataset (.txt Files Only)

» Addition of source/destination
point selection

ose From a Preconfigured Dataset

» User account removal

Figure 5: Updated Home Page

Issues with the Original Design

Issues Consequences

* Limited visibility * Correlating space complexity to

- Violati ¢ . N memory usage becomes
iolations of requirements implausible

 Split development * Alternatives require revising the

- Opportunity cost to remedy entire architecture of the system

concerns

Revision

* Single language for backend
development

Evolved Design

Algorithms
AED Algorithm1 AED Algorithm2
Wrapper Wrapper S0 0
for

Algorithm 1 GraphAlgl

for
Algorithm 2 | | GraphAlg2

Algorithm Execution Driver

Spring Web

(Bl

A.Igorithnll Selection. ----|
Algorithm

SPV Server |4 Algorithm Executor

Persistence Layer " Execution Driver
Execution
History -
Repository v v Graph
MVC Logic i i
Logs Graph
Dataset | _ I
Repository |~ —I
- Serialized-
Dataset Graph Factory
Deserialized--T

Figure 6: Updated Block Diagram

Application

SPV Server
[Module]

Implementation - Backend \

Benefits of the Evolved Design

) AED
epends on
[Module]
*Robust API
o depends on depends on
‘Modularity i i
*Structured testing Algorithm depends on
[Module]
‘Language/Framework features
depends on
Graph
[Module]
Legend

component

Figure 7: Module Dependency Diagram

POST

.Japi/algorithm/apsp/evaluate/1?datasetID=1

Implementation - Backend

"infurmatiunr:]

. . "type": "apsp”,
Benefits of the Evolved Design "nredecessors”: [

1
* Robust API 1
"individualMetrics": [
1.

"name”: "Floyd-Warshall's Algorithm",

* Modularity

* Structured testing

"averageRuntime”: 149.62,
"runtimeRange”: [

145,

163

* Language/Framework features

1l

"totalRuntime": 7481,
"standardDeviation": 3.554658914728229,
"Percentiles®th™: 149,
"Percentile?75th": 150,
"Percentile25th": 147

Figure 8: API Example 12

Implementation - Backend

Key Frameworks and Technologies Used

Web Server Testing [G“L"‘“ “E'm“““'] I —
> Spring MVC + Web ¢ Spring MockMVC l _ VMsSewer
Persistence » JUnit _ Spring Boot
- Spring Data JPA o]ackson [Ducl:er Repusrlury]i Docker Serves]
> MySQL Code Structure J'—T
> Spring Modulith = MySQL Database
Development Operations [Execution History| | patasers |
» GitLab Actions
« Docker T ——

Figure 9: Deployment Strategy

Implementation - Frontend

Homepage

Mapbox Visualization Page

Sigma Visualization Page
Results Page
Tutorial Page

Figure 10: Example of a Sigma Visualization

14

@ Tutorisl - Shortest Path Algorith. X +

€ > C 0O G localhost

B tutoraks | Random [15U [Subs

Interactive Evaluation of SP Methods

Welcome to our Algorithm Visualizer! To start, just:

Select one, up to two, algorithms from the same group (All Pair Shortest Path (APSP) or Single Source Shortest Path (SSSP))

Johnson's Algorithm Dijkstra's Algorithm

OR Thorup's Algorithm
Floyd-Warshall's Algorithm

Bellman-Ford's Algorithm

Select a dataset in a .txt file, with the file formatted as shown below OR a preconfigured dataset (Long Beach or Escalon)

6 B MUS we this | ne p sp denotes a shortest th algorithm, ¢ the # of vertices, and 8 is the £ edg

es mint e (in this example 't would be

Select starting and ending points for your dataset (AKA the vertex you want to start at and end at)

Starting Point: | Node 1 ~

Ending Point: Node 4 v

Select the directed checkbox if you would like a directed graph
Click the "Start Now" button to view your algorithm run results on the results page
Click “View Path” on the results page to view your Sigma or MapBox visualization

Helpful Tip: You may use weighted or unweighted edges - if you want to use unweighted edges, simply put a ‘1" in the last column for every arc

Start Now

i ¥SIAM —
= O Typehere h E i L

Testing - Frontend

User IHPU-t c an edge between node 8 and node 1 with a weight of 3
a@1l3
Ul NaVlga’ﬂOﬂ Figure 11: Part of an uploaded dataset file

End-to-End Communication

Visualization Rendering NO

.1

Figure 12: dataset represented in the
visualizer

Testing - Backend

Testing Strategy

Integration

/ Interface

Test Results

133 tests; 85%+ line coverage

* Additional details are available on p. 30 of the Design Document

Lessons Learned

* Use a different programming language -
C++, Rust

* Reevaluate implementation timeline

Thanks + Q&A

	Slide 1
	Slide 2: Problem Statement
	Slide 3: Stakeholders & Use-Cases
	Slide 4: Requirements & Constraints
	Slide 5
	Slide 6: Original Design
	Slide 7: Original Design
	Slide 8: How Our Design Evolved
	Slide 9: Issues with the Original Design
	Slide 10: Evolved Design
	Slide 11
	Slide 12: Implementation – Backend
	Slide 13: Implementation – Backend
	Slide 14: Implementation - Frontend
	Slide 15
	Slide 16: Testing - Frontend
	Slide 17: Testing – Backend
	Slide 18: Lessons Learned
	Slide 19: Thanks + Q&A

