
SDDEC23-14

ALEX BLOMQUIST

SELMA SARIC

SAMUEL CALDWELL

YADIEL JOHNSON

1

Interactive Evaluation of
Shortest Path Methods

Problem Statement
Algorithm research is always developing, and
efficiency is important, but hard to compare

This project aims to develop a system that
enables:
◦ The use of Shortest Path algorithms namely

All Pairs and Single Source.

◦ The use of different datasets like Escalon’s
road network pictured in Figure 1

...to output detailed comparisons in road-like
networks for an educational settings Figure 1: Shortest Path Visualized Route in

Escalon, California Via MapBox

2

Stakeholders & Use-Cases

Educators:
◦ Present and educate people about

the efficiency of different shortest-
path algorithms

Students:
◦ Tool to better understand and learn

about the performance of algorithms
on different data sets

Figure 2: Use-Case Diagram

3

Requirements & Constraints
Requirements:

◦ User upload/algorithm selection

◦ Clean, organized presentation of SP visualizations

◦ Algorithm execution on data sets + metrics report

◦ Visualizations of algorithm outcomes/comparisons

◦ Optimal resource usage per algorithm run

◦ Report generation and storage

Constraints:

◦ Full-Stack Solution

◦ Budget: No more than $200

4

Initial Milestones

Milestone Metrics:

Finalize System Architecture Design (April 2nd)

Develop Server, Driver, and Web App Components (Sept. 17th/Oct. 1st)

Algorithm Visualization/AED (Nov. 1st)

Fully Develop User Interface/Server (Nov. 11th)

Integration and System Testing (Nov. 17th)

Final Software Release and Presentation to Panel (Dec 3rd/Dec. 8th)

5

Frontend

• Not many components on page

• Features were not organized

Figure 3: Original Home Page Wireframe

Original Design

6

Original Design
Web Server

• Serves web application

• Tracks algorithm executions

• Manages dataset storage

Algorithm Execution Driver

• Manages execution logic

• Multi-language

• Executes algorithms in C
• Control logic in Java

Figure 4: Original Backend Block Diagram

7

How Our Design Evolved

Frontend

• Addition of tutorial page

• Addition of source/destination
point selection

• User account removal

Figure 5: Updated Home Page

8

Issues with the Original Design
Issues

• Limited visibility

• Violations of requirements

• Split development

• Opportunity cost to remedy
concerns

Revision

• Single language for backend
development

Consequences

• Correlating space complexity to
memory usage becomes
implausible

• Alternatives require revising the
entire architecture of the system

9

Evolved Design

Figure 6: Updated Block Diagram 10

Implementation – Backend

Benefits of the Evolved Design

•Robust API

•Modularity

•Structured testing

•Language/Framework features

Figure 7: Module Dependency Diagram

11

Implementation – Backend

Benefits of the Evolved Design

• Robust API

• Modularity

• Structured testing

• Language/Framework features

POST
…/api/algorithm/apsp/evaluate/1?datasetID=1

Figure 8: API Example 12

Implementation – Backend

Web Server
◦ Spring MVC + Web

Persistence
◦ Spring Data JPA

◦ MySQL

Testing
◦ Spring MockMVC

◦ JUnit

◦ Jackson

Code Structure
◦ Spring Modulith

Key Frameworks and Technologies Used

Development Operations
• GitLab Actions
• Docker

Figure 9: Deployment Strategy

13

Implementation - Frontend

Homepage

Mapbox Visualization Page

Sigma Visualization Page

Results Page

Tutorial Page

14

Figure 10: Example of a Sigma Visualization

15

Testing - Frontend

User Input

UI Navigation

End-to-End Communication

Visualization Rendering

16Details for Unit Testing are available on page 30 of the design document

Figure 11: Part of an uploaded dataset file

Figure 12: dataset represented in the
visualizer

Testing – Backend
Testing Strategy

Test Results

133 tests; 85%+ line coverage

Integration
/ Interface

Unit End-to-End

17

* Additional details are available on p. 30 of the Design Document

Lessons Learned
• Use a different programming language –

C++, Rust

• Reevaluate implementation timeline

18

Thanks + Q&A

19

	Slide 1
	Slide 2: Problem Statement
	Slide 3: Stakeholders & Use-Cases
	Slide 4: Requirements & Constraints
	Slide 5
	Slide 6: Original Design
	Slide 7: Original Design
	Slide 8: How Our Design Evolved
	Slide 9: Issues with the Original Design
	Slide 10: Evolved Design
	Slide 11
	Slide 12: Implementation – Backend
	Slide 13: Implementation – Backend
	Slide 14: Implementation - Frontend
	Slide 15
	Slide 16: Testing - Frontend
	Slide 17: Testing – Backend
	Slide 18: Lessons Learned
	Slide 19: Thanks + Q&A

