
A Survey of Shortest-Path Algorithms
Summary
Taxonomy & Breakdown

Project Title Interactive evaluation of shortest path methods

Client & Advisor Goce Trajcevski, Mengxuan Zhang

Team sddec23-14

Team Members Alex Blomquist, Sam Caldwell, Selma Saric, Yadiel Johnson

1 Table of Contents

Taxonomy .. 3

Breakdown .. 4

Static Shortest-Path Algorithms .. 4

Single-Source Shortest-Path (SSSP) .. 4

All-Pairs Shortest-Path (APSP) ... 5

Dynamic Shortest-Path Algorithms ... 6

Time-Dependent Shortest-Path Algorithms .. 7

Continuous-Time Algorithms .. 7

Discrete-Time Algorithms ... 7

Stochastic Shortest-Path Algorithms .. 8

Adaptive Algorithms .. 8

Non-Adaptive Algorithms ... 8

Parametric Shortest-Path Algorithms .. 9

Algorithms ... 9

Replacement Shortest-Path Algorithms .. 9

Algorithms ... 9

There are two broad categories for shortest-path algorithms:

Single-source Shortest-path (SSSP) All-pairs Shortest-path (APSP)

Finding shortest-path from a single source
vertex to all other vertices

Finding the shortest-path between all pairs of
vertices in a graph

But they may be classified under additional, different categories due to how much research there

exists on the subject. Madkour et al. propose the following taxonomy for shortest-path algorithms.

2 Taxonomy

The following is a list detailing these classifications.

• Hierarchical Algorithms: Breaks shortest-path into a linear complexity problem, can lead

to enhanced performance via orders of magnitude

• Goal-Directed Algorithms: Optimize in terms of distance or time toward the target

solution

• Distance Oracle Algorithms: Includes a pre-processing step to speed up the shortest-path

query time, which can be either exact or approximate

• Dynamic Algorithms: Process updates or query operations on a graph over time. These

updates can insert, delete edges, or update from graphs. The query operation computes the

distance between source and destination vertices. Includes both APSP and SSSP

• Time-Dependent Algorithms: Best for graphs that change over time in a predictable

fashion

• Stochastic Shortest-path Algorithm: Captures uncertainty associated with edges by

modeling them as random variables.

• Parametric Shortest-path Algorithm: Computes solutions based on all values of a specific

parameter

• Replacement Path Algorithm: Computes a solution that avoids a specified edge for every

edge between a source vertex and the destination vertex. Replacement paths achieve good
performance by reusing the computations of each edge it avoided

• Alternative Path Algorithm: Also computes the shortest path between vertices that avoids

a specified edge. The big difference is that the replacement paths are not required to

indicate a specified vertex or edge, avoiding rather a specified edge on the shortest path.

3 Breakdown

3.1 Static Shortest-Path Algorithms

3.1.1 Single-Source Shortest-Path (SSSP)

Definition
Given a Graph 𝐺 = (𝑉, 𝐸) and Source 𝑠 ∈ 𝑉, compute all distances 𝛿(𝑠, 𝑣), where 𝑣 ∈ 𝑉.

Algorithms

• Unweighted: The simplest SSSP case. It involves a breadth-first search that scans all

neighboring vertices from the root vertex. For each neighboring vertex, it searches non-

visited vertices until the path with the minimum number of edges is found.

• Dijkstra’s Algorithm: Used to find the shortest path in directed graphs with non-negative

weights by identifying vertices as “solved” or “unsolved”. Initially, it sets the source vertex
as a solved one and proceeds to check all other edges (with unsolved vertices) connected to

the source vertex and the destination. It's a brute-force algorithm achieving 𝑂(𝑛2) time

complexity and has the advantage of not needing to search all edges, which is especially

useful when some weights are particularly expensive. However, it cannot be done on non-

static graphs and cannot deal with negative weights.

o It can be altered to solve the dynamic programming equation through a method
called “reaching”. Reminder: dynamic programming avoids brute-force search by

opting into tackling subproblems instead.

• Fredman and Tarjan’s Fibonacci Heap: By modifying Dijkstra’s algorithm, this variation

achieves 𝑂(𝑛 𝑙𝑜𝑔 𝑛 + 𝑚) time complexity. This is because the incurred time for heap
operations is still 𝑂(𝑛 𝑙𝑜𝑔 𝑛 + 𝑚) while other operations only cost 𝑂(𝑛 + 𝑚).

o Later, an extension that included 𝑂(𝑚 + (𝑛 𝑙𝑜𝑔 𝑛)/𝑙𝑜𝑔𝑙𝑜𝑔 𝑛) variant of Dijkstra's

was introduced (called the “AF-Heap”) which provides amortized costs for most
heap operations and 𝑂(𝑙𝑜𝑔𝑛/𝑙𝑜𝑔𝑙𝑜𝑔𝑛) for deletion.

o Driscoll and Gabow propose a relaxed heap, which allows the heap order to be

violated. It is simply a parallel implementation of Dijkstra’s.

• Stratified Binary Tree (Improved Priority Queue): An online, manipulatable priority

queue with a time-complexity of 𝑂(𝑙𝑜𝑔𝑙𝑜𝑔 𝑛) and storage complexity of 𝑂(𝑛 𝑙𝑜𝑔𝑙𝑜𝑔 𝑛).

o This can be done with greater efficiency by providing memory and focusing on the

fact that you are simply sorting edges and applying a deterministic integer sorting

algorithm in a linear space that achieves a time complexity of

𝑂(𝑚 𝑙𝑜𝑔𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑜𝑔 𝑛).

• Thorup’s Deterministic Linear Time and Space Algorithm: Using a hierarchical

bucketing structure that avoids the sorting operation, the algorithm works by traversing a

component tree and, with Hagerup’s additions, reaches a time complexity of 𝑂(𝑛 +
𝑚 𝑙𝑜𝑔 𝑤) with 𝑤 being the width of the machine word.

• Bellman-Ford Algorithm: It is different from Dijkstra’s in that instead of selecting the

shortest distance neighbor edges, it selects all the neighbor edges. This allows it to work

with negative edge weights and detect negative cycles (unlike Dijkstra’s) at the cost of

slower run time. Its time complexity is 𝑂(𝑛𝑚).
o Yen proposed two performance modifications: one is edge relaxation and the other

is dividing edges based on a linear ordering of the vertices.

o Bannister and Eppstein introduced an improvement over Yen’s modifications that
use a random ordering instead of an arbitrary linear ordering.

• Karp’s Algorithm: Designed with the intention of addressing negative weight cycles. Karp

defines that a concept dubbed the “minimum cycle mean” and indicates that finding the

minimum cycle mean is similar to finding the negative cycle. This algorithm also has a time

complexity of 𝑂(𝑛𝑚).

3.1.2 All-Pairs Shortest-Path (APSP)

Definition
Given a graph 𝐺 = (𝑉, 𝐸), compute all distances between a source vertex 𝑠 and a destination 𝑣,
where 𝑠 ∈ 𝑉 and 𝑣 ∈ 𝑉.

Algorithms

• Dijkstra’s Algorithm: For graphs with non-negative edge weights, using the normal

Dijkstra algorithm over each vertex in the graph results in a time complexity of

𝑂(𝑚𝑛 + 𝑛2𝑙𝑜𝑔𝑛).

• Floyd-Warshall Algorithm: Attempts to find all pairs shortest-paths (APSP) in a weighted

graph containing positive and negative weighted edges. Their algorithm can detect the

existence of negative-weight cycles using a diagonal path matrix but it does not resolve

these cycles. The complexity of Floyd-Warshall algorithm is 𝑂(𝑛3), where 𝑛 is the number of

vertices. Note that it cannot find the exact shortest-path pairs because it does not store

information about intermediate vertices.
o By modifying it so that it can also store that information, it can have a space

complexity of 𝑂(𝑛3) or 𝑂(𝑛2) depending on the usage of a single displacement

array.

o It may not be better than Dijkstra’s if 𝑚 < 𝑛2 (assuming non-negative edge

weights).

Variations
There is a list of enhancements for the Floyd-Warshall algorithm in p.7 of the survey.

The best non-negative edge weight time complexity is 𝑂(𝑛2𝑙𝑜𝑔𝑛), given by an algorithm from Moffat

and Takaoka.

• The algorithm sorts all adjacency lists in order of increasing weight. It then performs a SSSP

computation n times in iterations that feature two phases.

The best positive integer edge weight complexity is 𝑂(𝑛𝑤 + 𝑐) where 𝑤 < 2.575, proposed by

Coppersmith and Winograd.

• Their proposed algorithm provides a transition between the fastest exact and approximate

shortest-paths algorithms with a linear error rate. The algorithm focuses on directed graphs

with small positive integer weights in order to obtain additive approximations. The

approximations are polynomial given the actual distance between pairs of vertices.

3.2 Dynamic Shortest-Path Algorithms
This class of algorithm must be able to process updates to the graph in between query operations.
Updates are defined as either insertion or deletion of edges. Algorithms that can only handle the

former are incremental algorithms, while algorithms that can only do the latter are decremental

algorithms. These are known as partially dynamic, whereas an algorithm that can do both together
is known as a fully dynamic algorithm.

• Demetrescu and Italiano’s algorithm: A fully dynamic algorithm over directed graphs for

APSP with real-valued edge weights, where every edge can have a predefined number of

values. It has an amortized time complexity of 𝑂(𝑆𝑛2.5𝑙𝑜𝑔3𝑛) for update operations while
achieving an optimal worst-case for query processing time.

o It does this by inserting or deleting a vertex and all of its possible edges whenever it

is inserted or deleted.
o It also maintains a complete distance matrix between updates.

• Thorup’s algorithm: An improvement over Demetrescu and Italiano’s algorithm. It reduces

the fully dynamic graph problem into a smaller set of decremental problems using a fully

dynamic minimum spanning tree for a more efficient solution.

• Bernstein’s algorithm: A (2 + 𝜀)-approximation algorithm for APSP over an undirected

graph with positive edge weights. Its update time is almost linear and its query time is

𝑂(𝑙𝑜𝑔𝑙𝑜𝑔𝑛). Due to it using a randomized update procedure, it relies on guessing several

different values for 𝑑(𝑥, 𝑦).

o He also proposes an (1 + 𝜀)-approximate algorithm that improves over existing

studies with respect to the delete operation and edge weight increase. The

algorithm computes the decremental all-pairs shortest-paths on weighted graphs.

The approach achieves an update time of O(𝑚𝑛2) using a randomized algorithm

• Roddity and Zwick’s algorithm: A fully dynamic APSP algorithm for unweighted directed

graphs, where the algorithm is randomized. It utilizes ideas from decremental algorithms.

• Hezinger et al. algorithm: Enhances over the fastest deterministic algorithm by achieving

an update time of 𝑂(𝑛2/5). Also achieves a constant query time. They also proposed a

deterministic algorithm with an update time of 𝑂(𝑚𝑛) and a query time of 𝑂(𝑙𝑜𝑔𝑙𝑜𝑔𝑛). The

proposed approach maintains a shortest-paths tree that is bounded by distance with an

Even-Shiloach tree based de-randomization technique.

3.3 Time-Dependent Shortest-Path Algorithms
A time-dependent shortest path algorithm processes graphs that have edges associated with a
function, known as an edge-delay function. The edge-delay function indicates how much time is

needed to travel from one vertex to another vertex. The query operation probes for the minimum-

travel-time path from the source to the destination vertex over graph. The returned result

represents the best departure time found in a given time interval.

3.3.1 Continuous-Time Algorithms
• Kanoulas et al.: Proposed an algorithm that finds a set of all fastest paths from source to

destination given a specified time interval. This interval is defined by the user and

represents the departure/arrival time. The query algorithm finds a partitioning scheme for

the time interval and creates a set of sub-intervals where each sub-interval is assigned to a

set of fastest paths. Probes the graph only once instead of multiple times.

• Ding et al.: Proposed an algorithm that finds the departure time that minimizes the travel

time over a road network. Also, traffic conditions are dynamically changing in the road
network. The algorithm is capable of operating on a variety of time-dependent graphs.

o Also proposed an algorithm for the shortest path problem over a large time-

dependent graph 𝐺𝑇. Each edge has a delay function that denotes the time taken
from the source vertex to the destination vertex at a given time. The user queries the

least travel time (LTT).

o Has space complexity of 𝑂((𝑛 + 𝑚) ∝ (𝑇)) and a time complexity of 𝑂((𝑛𝑙𝑜𝑔𝑛 +
 𝑚) ∝ (𝑇)).

• George et al.: Proposed a Time-Aggregated Graph (TAG) that changes its topology with

time. In TAG, vertices and edges are modeled as time series. Also responsible for managing

the edges and vertices that are absent during any instance in time. They proposed two
algorithms to compute shortest-path using time-aggregated network (SP-TAG) and best

start-time shortest path (BEST).

o SP-TAG finds the shortest path at the time of given query using a greedy algorithm.
Time complexity: 𝑂(𝑒(𝑙𝑜𝑔𝑇 + 𝑙𝑜𝑔𝑛))

o BEST finds out the best start-time (i.e., earliest travel time) over the entire period

using TAG. Time complexity: 𝑂(𝑛2𝑒𝑇)

▪ 𝑒 represents edges, 𝑛 represents vertices, and 𝑇 represents the time instance

3.3.2 Discrete-Time Algorithms
• Nannicini et al.: Proposed a bidirectional A* algorithm that restricts the A* search to a set

of vertices that are defined by a time-independent algorithm. Operates in two modes:

o The first mode, namely the forward search algorithm, is run on the graph weighted

by a specific cost function.

o The second mode, namely the backward search, is run on the graph weighted by a
lower bound function.

• Delling and Wagner: Concluded that most of the techniques that operate over time-

dependent graphs guarantee correctness by augmenting the preprocessing and query

phases subroutines.

• Foschini et al.: Concluded that linear edge-cost functions cause the shortest path to the

destination change 𝑛𝜭(𝑙𝑜𝑔𝑛) times. They study the complexity of the arrival time by mapping

the problem to a parametric shortest-paths problem in order for it to be analyzed correctly.

• Demiryurek et al.: Proposed a technique to speed up the fastest path computation over

time-dependent spatial graphs. They propose a technique based on the A* bidirectional

time-dependent algorithm that operates in two main stages.

o First stage: Pre-computation - partitions the graph into a set of partitions that do not
overlap. Next, they calculate a lower-bound distance label for vertices and borders.

o Second stage: Online - probes for the fastest path by utilizing a heuristic function

based on the computed distance labels.
o Results indicate that the proposed technique decreases the computational time and

reduces the storage complexity significantly.

3.4 Stochastic Shortest-Path Algorithms
A stochastic shortest-path attempts to capture the uncertainty associated with the edges by

modeling them as random variables. The objective is to compute the shortest-paths based on the

minimum expected costs. There are two types of algorithms for this type of problem, adaptive and

non-adaptive algorithms. Adaptive algorithms determine the next best step based on the current

graph at a certain time instance. Non-adaptive algorithms focus on minimizing the length of the
path.

3.4.1 Adaptive Algorithms
• Miller-Hooks and Mahmassani’s Algorithm: Determine the apriori (theoretical

deduction) least-expected-time-paths from all source vertices to a single destination vertex.
The computations are done for each departure time during busy time of the graph. It also

proposes a lower-bound over these apriori least-expected-time- paths.

• Nikolova’s Algorithm: Maximizes the probability without exceeding a specific threshold

for the shortest-paths length. It defines a probabilistic model where the edge weights are

drawn from a known probability distribution. The optimal path is one with the maximum
probability indicating a path does not pass a specific threshold.

3.4.2 Non-Adaptive Algorithms
• Loui’s Algorithm: Uses a utility function with the length of the path. The utility function is

monotone and non-decreasing. When the utility function exhibits a linear or exponential
behavior, it becomes separable into the edge lengths. This allows the utility function to be

identified using classical shortest-paths algorithms via paths that maximize the utility

function.

• Nikolova’s Algorithm: Algorithm for optimal route planning under uncertainty. It defines

the target as a function of both the path length and the departure time starting from the
source. Both the path and start time are jointly optimizable due to the penalizing behavior

for late and early arrivals. This joint optimization is reducible to classic shortest-path

algorithms.

3.5 Parametric Shortest-Path Algorithms
The objective of these algorithms is to compute the shortest-paths for all vertices based on a

specific parameter. It searches for the parameter values, known as breakpoints, where the shortest-

path tends to change. The edge value varies based on a linear function of the parameter value.

3.5.1 Algorithms
• Mulmuley and Shah: This algorithm proposes a model for lower-bound computation. It is a

variant of the Parallel Random Access Machine. It starts with a lower-bound definition

about the parametric complexity of the shortest-path problem. It plots the weights of the

shortest-path as a function, which results in an optimal cost graph that is piecewise-liner
and concave. The breakpoints are defined as a fixed set of linear weight functions over a

fixed graph.

• Young: Uses a modified Karp and Orlin’s algorithm to use Fibonacci heaps to improve its

performance instead. This allows obtaining shortest-paths in polynomial time by increasing

its tractability.

• Erikson: Algorithm for computing the maximum flow in planar graphs. It maintains three

structures; an edge spanning tree, a predecessor dual vertex set, and the slack value of dual

edge set. They compute the initial predecessor pointers and slacks in 𝑂(𝑛𝑙𝑜𝑔𝑛) time by
using Dijkstra’s.

3.6 Replacement Shortest-Path Algorithms
For every edge e on the shortest-path from the source to the destination, the replacement path

algorithm calculates a new shortest-path from the source to the destination that avoids e.

3.6.1 Algorithms
• Emek: Computes the replacement path in near-linear time. It requires 𝑂(𝑛𝑙𝑜𝑔3(𝑛)) time

during the preprocessing stage and 𝑂(ℎ𝑙𝑜𝑔𝑙𝑜𝑔𝑛) time to answer the replacement path
query

o ℎ is the number of hops in a weighted planar directed graph

• Roditty and Zwick: Proposes a Monte-Carlo randomized algorithm that computes the

replacement path in an unweighted directed graph.

	2 Taxonomy
	3 Breakdown
	3.1 Static Shortest-Path Algorithms
	3.1.1 Single-Source Shortest-Path (SSSP)
	Definition
	Algorithms

	3.1.2 All-Pairs Shortest-Path (APSP)
	Definition
	Algorithms
	Variations

	3.2 Dynamic Shortest-Path Algorithms
	3.3 Time-Dependent Shortest-Path Algorithms
	3.3.1 Continuous-Time Algorithms
	3.3.2 Discrete-Time Algorithms

	3.4 Stochastic Shortest-Path Algorithms
	3.4.1 Adaptive Algorithms
	3.4.2 Non-Adaptive Algorithms

	3.5 Parametric Shortest-Path Algorithms
	3.5.1 Algorithms

	3.6 Replacement Shortest-Path Algorithms
	3.6.1 Algorithms

